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ABSTRACT 

Free and forced oscillations are compared for infinite and bounded atmospheres. Both continuous and two 
layer bounded atmospheres are considered. It is found that bounded atmospheres reproduce the frce oscillations 
of the infinite atmosphere with accuracy that depends on top height-they, however, also introduce spurious free 
oscillations. In studying forced oscillations, the spurious oscillations of bounded atmospheres appear as spurious 
resonances. In general, bounded atmospheres do not properly respond to oscillations that propagate vertically. 

1. INTRODUCTION 

It is common practice to use simplified calculations in 
order to elucidate the nature of various more compli- 
cated atmospheric problems. As pointed out by Lindzen 
[3], a variety of such problems is included in the con- 
sideration of linearized perturbations on a static basic 
state (or one with a “constant” zonal flow). Sukh a study 

gives a remarkably good description of Rossby-Haurwitz 
waves, atmospheric tides, and other features. It is clear 
that various multilevel numerical models do not corre- 
spond precisely to the real atmosphere-especially as 
concerns vertical resolution and the upper boundary. If 
the above ’ mentioned simplified calculations had been 
carried out for prototypes ‘of the model atmospheres 
rather than of the real atmosphere, what would have 
resulted? In this paper we will consider the behavior of 
free and thermally forced linear perturbations on a static 
isothermal atmosphere for three different models : 

1. An infinite atmosphere where disturbances are re- 
quired to remain bounded as z (i.e., altitude) --fa. If 
the disturbances propagate vertically, a radiation con- 
dition is imposed at  great altitudes. 

2. A bounded atmosphere where dp/dt=O at some 
upper boundary height. 

3. A bounded atmosphere wherein the continuous 
vertical variation is approximated by a two layer model. 

It will be shown that, under certain conditions, various 
classes of motions behave similarly in each of the models. 
However, there are always very significant differences as 
well. In particular, while models 2 and 3 can approxi- 
mately reproduce the Rossby waves described by model 
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1, they also produce spurious Rossby waves. Also, models 
2 and 3 can badly misrepresent thermal tides. Model 2 
has been included primarily because it is toward this 
model that mu1 tilevel models converge as the number 
of levels is increased. 

9. EQUATIONS 

We consider the problem of linearized oscillations in a 
rotating, isothermal, spherical gaseous envelope. For pur- 
poses of considering forced responses we will include a 
thermal excitation of the form 

J=J(e,p,t)e-213, (1) 

where O=colatitude, cp=longitude, t= time, x=z/H, H 
=RTo/g, R=gas constant, y=acceleration of gravity, 
To=basic temperature, and J=heating per unit time 
per unit mass. The particular vertical structure chosen 
for J is of no particular significance. It happens to  be the 
structure for excitation by insolation absorption by water 
vapor (Siebert [5]). The oscillations that exist when J=O 
are free oscillations; Rossby-Haurwitz waves are of this 
type- 

It proves convenient to  reduce the various equations 
for small oscillatory fields to a single equation for the 
following variable : 

p 
y=-,P, (2) 

where y=cp/co= 1.4, p,=basic surface pressure, w=dp/dt,  
and p=pressure. The equation for y is separable in its 
8, cp, t ,  and z (or x) dependence.’ y may be written 

1 See Siebert [5], for example, for a complete development of these equations. 
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y=L(x)@(0)efavefrt. (3) The condition that w=O a t  x=O (Le., at  p=ps )  becomes 

It is assumed that J will have the same t and (p dependence. 
@(e) satisfies Laplace’s Tidal Equation: 

U where p=cos 0, j=--, and Q=earth’s rotation rate. 2Q 

is the separation constant; it is usually written 

( 5 )  

where a=earth’s radius. h, known as the equivalent 
depth, replaces A. The boundary conditions on 0 are.that 
it be bounded a t  the poles. When, for a given solution of 
(4), J can be expressed as 

J=J(x)@(0) ,  (6) 
then L(s) satisfies 

(7) 

where ~ = 2 / 7 .  

The condition that w (vertical velocity) equal zero a t  
x = 0 implies 

dL &+(z-+o, H 1 

a t  x = 0. 
As x + ~ ,  it is required that L remain bounded. If 

(4~H/h-1 )>0 ,  this is an insufficient condition. It is usual 
t o  require, in addition, that there be no downcoming 
energy flux. These considerations are only relevant to an 
infinite atmosphere. In  numerical models, it is usual to 
introduce the artifice of an atmosphere with a top a t  
some height. At this height, it is usually required that 

y=w=o. (9) 

If one uses pressure instead of x (or z) as a vertical co- 
ordinate (assuming motions are hydrostatic) then (7) 
becomes 

where S = K H / ~ ~  (Nunn [4], Flattery [2]). The height 
perturbation is related to w as follows: 

bz 
bt w=gp  - at p=p, ,  

where p=density; p,=p,/gH. 

In  studying free oscillations we solve (7) with J=O. 
In general there will be only a single h for which (7) has 
a nontrivial solution (Dikii [ l ] ) .  However, when the 
atmosphere has an artificial top then there are an infinite 
number of h’s for which (7) has nontrivial solutions. For 
a bounded atmosphere approximated by N levels there 
will only be N h’s since only N of the infinite number of 
vertical modes can be independently resolved. Given h, 
and specifying the zonal wave number, s, (4) with its 
boundary conditions cons ti tu tes an eigenf unc tion-eigen- 
value problem where the eigenvalue is u (or c,  the phase 
speed, since s is known), and eigenfunctions for different 
c’s differ in their latitude wave number. These constitute 
the free oscillations of the atmosphere; they include 
Rossby-Haurwitz waves. In  an infinite atmosphere these 
are all associated with a single h. Anticipating later 
results, it  should be pointed out that bounded models 
will have other Rossby-Haurwitz waves associated with 
the spurious h’s. 

For forced oscillations u and s are specified. Equation 
(4), with its associated boundary conditions, then be- 
comes an eigenvalue-eigenfunction problem where h is 
the eigenvalue. J’s latitude dependence is expanded in 
terms of the eigenfunctions (denoted by subscript n) 
yielding 

y is similarly expanded, the vertical structure of each 
mode is obtained by solving (7) for each h,. Each eigen- 
function is associated with a different vertical structure; 
for each h, we compute the atmosphere’s response to J,. 
If for some rn and s the resulting h, is equal to that for 
free oscillations, then we will obtain an infinite response. 
Thus, an examination of forced responses for all values 
of h will also reveal the free oscillations. 

3. RESPONSE FUNCTIONS 

By considering (7) for all values of h we will, in effect, 
have computed the response of all forced oscillations- 
given the relation of h to u and s [and some latitude wave 
number corresponding to the particular eigenfunction of 
( 4 ) ] .  Similarly, where the response blows up yields the 
h(’s) for the free oscillations for which u (or c)  is related to  
s and n (and some latitude wave number). In  connection 
with the idea of “response” we have two problems: 1 )  
what is it that we are studying the response to, and 2) 
what constitutes a response. Since we are primarily inter- 
ested in the effects of lids and two layer approximations, 
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we will restrict ourselves to  isothermal atmospheres and 
forcings of the form given in (1). As a measure of response 
we will use surface pressure. Let 
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Sp/p, a t  z=O is related to L as follows (Siebert [5]): 

6 p _ . . 3  L(0). (20) Ps 
i=RT r ,  J,= ~ @n(e)e-2/3, (14) Hence, 

where r,=some measure of the temperature change that 
would occur in the absence of dynamics. Then the surface 
pressure response will be given by 

@=R(hn) @,(O), 
PS 

H where R is the nondimensional response function. Our 
problem is to evaluate R.2 

(7) is 
For an infinite isothermal atmosphere the solution to R1== 

(16) L = Ae ihz+ Be- ih2+rgh i a R  (25/3i + x2) e-5/6z 

for p2>0. if 

and 
r 

(17) L = A efl+ Be -@+ - i aR  e-5/6z 
rgh (25/36-p2) 

if 

CL 2 - 1  -4 [ l - y I > O .  

In the first case [;.e., equation (IS)], the radiation 
condition implies B=O. In  the second case [i.e., equation 
(17)] boundedness requires that A=O. Applying (8) , 
equations (16) and (17) become 

for 

and 

for 

* R, as used here, should he distinguished from R when used for the gss constant. 

For a bounded, continuous atmosphere we take L=O 
a t  some top where x=zl. Then we obtain 

r bzi 1 

-E L"-x cot Ax,+- 

x cot hl,] 

h 6  sm Ax, 
H 1  R2 = 

for Az>O, 
and 

for p2>0. 

In treating the two layer atmosphere we go over to 
pressure coordinates (see .Thompson '[6], for example). For 
the unperturbed state 

z -=-log H (E). (25) 

The condition that the perturbation vertical velocity be 
zero a t  the ground is given by equation (12), and the 
upper boundary condition is (9). In view of (14) , equation 
(10) becomes 

The levels are shown in figure 1. w is evaluated a t  levels 0, 
1,2.  z' is evaluated a t  levels 1/2 and 3/2. Thus (26) becomes 
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PO 

p2= P, 

FIGURE 1.-Placement and labelling of levels for two layer 
calculations. 

or 

since w 0  has been taken as zero.3 From (11) we have 

and 

In order to satisfy (12) we need z’ at level 2. How one 
finds this in a model as crude as the two layer model is, 
a t  best, somewhat arbitrary; we have used linear extrap- 
olation. Thus, 

The important physical feature of (30) is that i t  shows 
that zl is a function of both w 2  and wl; this particular 
feature does not ‘depend on the use of linear extrapolation. 
Combining (28) and (30) we get 

Now Sp a t  the ground equals iaw,, and therefore 

113 6 2 -H&\ P 

Before proceeding to detailed discussion of R,, Rz,  and 
R3, several obvious differences in these response functions 
may be noted. First, R, and R3 must be real; R1 need not 
be. This is merely a result of the fact that energy can 
escape upwards in an unbounded atmosphere while i t  
cannot in a bounded atmosphere. With an energy-absorb- 

3 Equation (27) is a finite difference approximation to equation (26). Such approxima- 
tions are by no means unique, and other differencing schemes would lead to quantitative 
though not qualitative differences in results. Quantitative differences are indicative of 
errors intrinsic to the use of finite differences. 

ing lower boundary layer in the bounded models, R2 and 
Ra will become complex. Needless to add, however, this 
will not make the bounded models better approximations 
to the inviscid unbounded model. It is also immediately 
clear that Rl’s denominator has a zero for only one real 
value of h; Rz has an infinite number of poles; R3’s de- 
nominator has only two This is merely an exten- 
sion of the remarks in sections 1 and 2. 

4. GENERAL DISCUSSION 
In  figures 2a, 2b, 2c, and 2d, the amplitudes of R1, Rz, 

and R3 are shown as functions of h. In figure 3 the phases 
of R1, R2, and RB are shown as functions of h. For Rz and 
R3, the top is a t  200 mb. The phases for negative h’s are 
not shown since the phases of R1, R2, and R3 all equal 0’ 
for negative h. Figures 4a and 4b merely reproduce figures 
2a and 2c except that the top for R2 and R3 is taken a t  10 
mb. Similarly, figure 5 corresponds to figure 3-but with 
the new top height. 

Concerning figures Za, Zb, 2c, Zd, and 3, we may note 
the following : 

1. lRzl and lRal are approximately 40 percent smaller 
than (R1( for h>”-20 km. 

2. IR1(, lRzl, and JR31 are in modest agreement for -20 
<h < - 0.1 km. 

3. IR1( and (R2( are in agreement for O>h>-O.l km. 
4. 1R31 is much smaller than (R1( for O ~ h ~ - O . l  km. 
5. (Rzl and lR31 are smaller than JR1l for h y l 0  km. 
6. IRIJ, IR2J, and JR31 are in modest agreement for 

+5 km.>h>+l.5 km. 
7. (R2( and 1R3J exhibit their first free oscillations for h 

between 6.5 and 7.0 km. while JRIJ exhibits its only free 
oscillation for h = 10.6 km. 

8. IR3( exhibits an additional spurious free oscillation 
for h-0.18 km. 

9. lRzl exhibits spurious free oscillations for h=0.5, 
0.15, 0.062, . . . km., etc. 

10. Because of 8 and 9 above, there is no meaningful 
agreement among R1, Rz ,  and R3 for O<hY+1.5 km. 

When the top in the bounded models is raised to 10 mb., 
the following changes may be noted in figures 4a, 4b, and 5: 

1. There is now good agreement among RI, Rz, and R3 
for h < -1.5 km. 

2. There is excellent agreement between R1 and Rz a t  all 
negative h’s. 

3. For 0 > h > - 1 km., R3 is too smali. 
4. For h > +5 km. there is now modest agreement among 

all models. In  particular, the iirst free oscillation in the 
bounded models occurs a t  h = 10 km., which is quite near 
the correct value. 

5. For 0 < h < 5 km. there is no longer any useful agree- 
ment between the bounded and unbounded models. In  

- -  - -  

~~ ~ 

4 If, as is commonly done, we had taken wz=O instead of (12) as our lower boundary 
cgndition (vis the baroclinic stability analysis in Thompson IS]), then we would obtain 
an expression for WI with only one zero in its denominator, This value of h would be close 
to the smaller, spurious zero in the denominator of (32). When wz=O, there is, however, 
another solution in two layer models for which W I = W Z = ~ O = O .  This solution corresponds 
more closely to the free oscillation of the “real” atmosphere. 
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a 
I l l 1  I I I 1 I 

FIGURE 2.-(a) The amplitudes of the response functions for unbounded ( R I ) ,  bounded continuous ( R J ,  and bounded two layer (R3) 
atmospheres as functions of h for -0.1 km. >h > - 100 km. The tops for the bounded models are at 200 mb. (b) Same as (a) but 
for -0.001 km. > h >-0.1 km. (c) Same as (a) but for 100 km. >h >O.l km. (d) Same as (a) but for 1 km. >h >O.OOl  km. 
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FIGURE 3.-The phases of R1, Rl, and RI as functions of h for 100 
km. > h > O . O O l  km. The tops for the bounded models are a t  
200 mb. 

particular, R, exhibits a spurious free oscillation for h = 
0.79 km., while Rz exhibits spurious free oscillations for A 
= 2.65, 0.98, 0.37, . . . km., etc. 

The reasons for the spurious free oscillations in the 
bounded models have already been discussed and will not 
be dwelt on further. For large (h( the oscillatory fields’ 
energy decreases with height approximately as p .  Clearly 
for models with tops, the upper boundary condition may 
violate this behavior severely if the top is too low. This is 
the case for a top a t  200 mb.; it is not for a top a t  10 mb. 
However, for h small and negative (corresponding to decay 
in the vertical With short vertical scale) the continuous 
bounded model becomes increasingly accurate; the two 
layer model underestimates the response because it cannot 
resolve short vertical scales. The lower the top, the better 
the resolution of a two layer model is. Hence, the two 
layer model with a 200-mb. top has better accuracy a t  
small negative h’s than the one with a 10-mb. top. For 
small positive h’s (corresponding to oscillations which 
propagate vertically) both Rz and R, are not even remote 
approximations to R1. This is, moreover, not changed (ex- 
cept perhaps to make matters worse) by moving the top of 
the bounded atmospheres higher. This is seen in (23) where 
taking z r  + 03 for small positive h does not lead to a de- 
fined limit, In  the two layer model, poor resolution also 

contributes to the problem, but it should be noted that 
higher resolution would not do more than produce a better 
approxima tion to the continuous bounded atmosphere. 

5. SPECIFIC CONCLUSIONS 
The preceding discussion was phrased in general terms. 

We will now discuss some specific implications for numeri- 
cal models. 

ROSSBY-H AURWITZ WAVES 

Rossby-Haurwitz waves are free oscillations of the 
atmosphere for which the earth’s rotation is of essential 
importance. At middle latitudes in the earth’s atmosphere 
their phase speed in the absence of zonal flow is given 
approximately by 

1 Oa -- - 

where n is some la4itude wave number (see Lindzen [3] 
for example). The h in (33) is that for which the atmos- 
phere executes free oscillations. As we have seen in 
section 4, h = 10.6 km. for an unbounded atmosphere. 
For bounded atmospheres there is more than one h for 
free oscillations, and only the largest one corresponds to 
free oscillations of a “real” atmosphere. For models with 
tops a t  200 mb. even this h is quantitatively in error. As 
we see in figure 2c, h = 6.5 km. in this case. From (33) 
we see that for n=2 and s=5 there will be an 8 percent 
error in c due to  this particular error in h. Although 
seemingly small, this error alone will produce a 90” error 
in the phase of a planetary wave within about 5 days. 
This error can be reduced by moving the atmosphere’s 
top higher. There remain, however, the possibly larger 
errors due to the spurious free oscillations. In  connection 
with these, it must be noted that each free oscillation is 
associated with a particular vertical structure. In  figure 
6 we show the vertical structures of w for the two free 
h’s in the two layer model with a top a t  200 mb. From 
figure 6 we may surmise that the effect of the spurious 
oscillations will be most noticeable at  the middle level. 

A priori it appears that the above described errors 
should be present in current numerical experiments. Thus 
far, however, no results of numerical experiments have 
been analyzed for this important possibility. In  order for 
Sprious waves to appear, they must in some way be 
activated. Errors in initial conditions may be adequate 
for this purpose. That the spurious waves may be baro- 
clinically unstable (in numerical models) is another possi- 
bility. The question of whether or not the “real” Rossby- 
Haurwitz wave is the only one which may become baro- 
clinically unstable is an open one-the answer to which is 
of obvious importance. Even in the absence of other 
sources the spurious oscillations will receive energy via 

6 It is possible in a multi-level to have a top at p=O. However, as a result Of inevitable 
finite-difference errors, this is equivalent to having the top at some small, finite p .  
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FIGURE 4.-(a) Same as figure 2a but the tops for the bounded 
models arc at 10 mb. (b) Same as figure 2c but the tops of the 
bounded models are at 10 mb. 
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FIGURE 6.-The vertical structures of the two free modes occurring 
in the two layer model with a top a t  200 mb. The mode corre- 
sponding to an equivalent depth of 0.167 km. is spurious. 
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h 

-- 
Model 1 ............................................................. 
Model2a-(R~-top at 200 mb.) ..................................... 
Model3a-(R~-topat200 mb.) ..................................... 
Model P b - ( R ~ t o p  at 10 mb.) ...................................... 
Mode13b-(R3--top at 10 mb.) ...._______...._____.-.--.....________ 

TABLE 1.-Response amplitude IRI and phase angles ‘p f o r  diurnal and semidiurnal oscillations in model atmospheres summarized from figures 9-6 

Migrating solar (u=ZO, 8=2) semi- Migrating solar (u=O, s=l )  diurnal 
diurnal 

___- _ _ _ - - - - ~  
7.85 km. 2.11 km. -12.25 km. -1.75 km. ,R+p.699 :. , - g 1 2 2  k;. 

IRI ‘P IRI ‘P IRI ‘P IRI ‘P 

2.29 172.5’ 0.919 208.4” 0.234 180” 0.349 180’ 0.549 230.2’ 0.234 248.9” 
3.82 0.0’ 0.768 180‘ 0.164 180’ 0.308 180” 1.23 180’ 0.326 0.0~ 
2.49 0.0” 0.856 180’ 0.181 180’ 0.382 180’ 0.779 180” 1.56 0.0” 
3.02 180” 0.146 180’ 0.233 180’ 0.348 180’ 0.226 180“ 0.482 o.oo 
3.24 180” 1.22 180’ 0.250 180° 0.345 180’ 4.56 0.0“ 0.109 o.oo 

-- _-- - - - ~  

nonlinear exchanges. Once excited, there is no reason a t  
present to suppose that spurious oscillations will be 
preferentially damped in numerical experiments since, as 
shown by Lindzen [3], small values of h may be associated 
with large horizontal scales. Small values of h are associ- 
ated with small vertical wavelengths, but even h’s of the 
order of lo-’ km. are associated with vertical wavelengths 
of the order of 10 km., and excessive damping of such 
large wavelengths could result in poor modeling on other 
grounds. 

T H E R M A L  TIDES 

Thermal tides are forced oscillations as described in 
section 2. They are excited primarily by the daily varia- 
tions in insolation absorption by ozone and water vapor. 
For each tidal component we specify u and s, and solve 
(4) for an infinite set of On’s and the accompanying h,’s. 
The excitation for the particular component is expanded 
as in (13), and (7) is solved for each n. The most important 
tidal components are the migrating solar semidiurnal 
( ~ = 2 9 , s = 2 )  and the migrating solar diurnal (u=Q, s=1).  
For the former, the most important solutions of (4) 
(Hough Functions) are associated with equivalent depths 
(hn’s) of 7.85 km. and 2.11 km. For the latter the most 
important Hough Functions are associated with equivalent 
depths of -12.25 km., -1.75 km., 0.699 km., and 0.122 
km. To the extent that tides are excited by absorption by 
water vapor, figures 2-5 show the effect of different models 
on the surface pressure response. The results are sum- 
marized in table 1. This table is self explanatory, and the 
differences among the models are evident. Particularly 
noteworthy is the phase error for the main semidiurnal 
mode in the bounded model when the top is at  200 mb. 

It is important at  this point to note some differences 
between the two layer model used here and those used in 
actual numerical experiments. For example, we have here 
assumed that (4) is solved “exactly” in order to obtain 

the h,’s. In  numerical experiments it is, in effect, solved 
by finite differences. Moreover, effects of mean flow, 
ignored here, are automatically included in numerical 
experiments. As a result of these differences, the h,’s 
applicable to  numerical experiments may differ from those 
shown in table 1. In particular, if the appropriate h for 
the main solar semidiurnal mode is slightly smaller than 
7.85 km., then we see from figure 2c that the response of 
atmospheres with tops at  200 mb. will be much greater 
than shown in table 1. Finally, we note that dissipation, 
neglected here, exists in both the real and the numerical 
atmospheres. The effect of boundary layer dissipation on 
the response phase has been mentioned in section 3. A 
measure of the importance of dissipation in the real 
atmosphere is given by the fact that the predicted peak 
in the semidiurnal surface pressure oscillation is near 
0900 hr. (neglecting dissipation) while the observed peak 
occurs between 0930 and 1000 (i.e., dissipation appears to  
move the peak closer to  local noon). For models with tops 
at  200 mb., the predicted peak occurs at  1500 hr. It 
should be observed to occur between 1200 and 1500 hr. 
in numerical models depending on how dissipat ion is 
modelled. 
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